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We address hysteresis of three-dimensional polydisperse granular packs, comparing macro- and microscopic
viewpoints, to reveal their elastic/inelastic mechanics and force network anisotropy. During the uniaxial
loading-unloading cycle of an appropriately prepared pack, one can decompose the force network into weak
and strong subnetworks. The first stages of loading exhibit arching, where all the fabric displays negative
anisotropy. For later stages, the strong �weak� network shows positive �negative� anisotropy. On unloading, the
force network progresses to a fabric wide hydrostatic point, where the anisotropies of the weak and strong
subnetworks switch signs. During the loading stage, a Mohr circle analysis permits the identification of a
well-defined macroscopic internal friction angle, whose value is larger than that of grain-grain interactions. To
analyze unloading, a generalized local Coulomb-friction argument predicts a continuously changing friction
angle, that vanishes at the hydrostatic point. A suggestive interplay between microscopic friction and fabric
structure, at different loding stages, is proposed as the mechanism for the emergence of a macro internal
friction angle.
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I. INTRODUCTION

The behavior of granular materials under loading has been
a subject of strong recent interest since it reveals many of the
unique mechanical features of this phase of matter. Many of
these features are inherited by granular rocks under uniaxial
loading, and the anisotropic stresses developed under these
conditions determine their mechanical strength and behavior
under shear. The behavior of granular packs under cycles of
compression is well known to exhibit hysteresis �1–4�, mani-
fested as different paths in the lateral to compressive stress
curves as one increases and then decreases the applied load.
While there has been a considerable number of theoretical
and experimental work on loading of polydisperse grains
�4–7�, the behavior of the resulting pack when stress is lifted
has received much less attention.

In the literature of soil mechanics the result of burdening
sands uniaxially and then lifting the burden has been de-
scribed as an overconsolidated state �8–11� as it is com-
monly termed. Depending on the origin of the granular pack,
i.e., whether it originated from a process of deposition or was
compactified from a random mixture, it must undergo a num-
ber of cycles before reaching a reproducible hysteresis cycle.
The convergence to the limit cycle is of interest in itself �12�,
since the parameters that evolve to determine a unique me-
chanical behavior are unknown and generally correspond to
those that minimize internal friction.

A phenomenological model for hysteresis in granular
rocks has been developed in the context of Preisach-
Mayergoyz �PM� models �13,14� where hysteretic meso-
scopic units go a considerable way in explaining hysteresis
and discrete memory effects �14�. Nevertheless, such models
are only loosely based on the microscopic underpinnings
such as the details of grain contacts. On the other hand, an-
isotropy induced by stress, either pure shear or isotropic
stress to study filamentary force network characteristics has
been addressed in a number of theoretical �15� and experi-

mental �16� works. These works show how one can distin-
guish between shear and isotropic stresses in the network by
way of the force distribution and correlations of tangential
and normal forces.

In this paper we address hysteresis and anisotropy of a
uniaxially loaded pile from both the macroscopic and the
microscopic force fabric points of view. We show that un-
loading a granular material is starkly different from its load-
ing counterpart and reveals features of recently developed
scenarios of granular systems under loading in terms of a
force network fabric �6,7�. We follow the anisotropic orien-
tation of the force fabric as a function of loading and unload-
ing and find, on the unloading path, a striking feature: aniso-
tropy switching, a regime where the strong network �6�
changes from the vertical to perpendicular while the uniaxial
stress is still nonzero. After switching, the material preserves
an intrinsic anisotropy even while completely unloaded, de-
scribing the overconsolidated state. The two regimes are
separated by a global �isotropic strain� and local �isotropic
fabric� hydrostatic point. During loading, on the other hand,
the fabric reveals clear evidence of arching before a strong
network positive anisotropy develops. The strong and weak
networks respond very differently to increasing/decreasing
stress.

Finally, we make contact with a well-known rock me-
chanics tool, the Mohr circle, in order to define a macro-
scopic friction angle. On loading one can compute a well-
defined macro friction coefficient that is larger than that of
the grain-grain interaction. This we discuss in terms of the
average geometry of the stress planes given by the force
fabric. On unloading, the macro internal friction seems to
vary continuously and vanishes at the hydrostatic point.

II. GRANULAR MODEL

Very accurate representations of unconsolidated sands
have been developed in three dimensions �5� that consider a
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nonlinear Hertz-Mindlin model for the grain-grain interac-
tions and also account for surface elasticity �17�. The predic-
tions of the Hertz-Mindlin model are in close correspon-
dence to experimental tests �12� of relatively homogeneous
sand packs without cementation �see also Ref. �9��.

At the microscopic level, when two grains come into con-
tact, they interact with a repulsive nonlinear viscoelastic
force �5,12,17� Fc given by

Fc = ���nRf��n�n − �n�̇n��n̂ + Fs, �1�

where the first term, on the right-hand side, represents the
force Fn normal to the contact area. For the labeled grains 1
and 2 with radii R1, R2 and positions r1, r2, �n=max�0,R1
+R2− �r2−r1�� and n̂= �r1−r2� / �r1−r2� is the unitary vector
joining the grain centers. The normal stiffness of the contact,
�n=4G / �1−��, where G=29 GPa is the shear modulus and
�=0.08 is the Poisson coefficient, Rf = �R1R2� / �R1+R2� is an
effective radius and ��nRf is the radius of the contact area.
The second term in braces in Eq. �1� represents the the vis-
cous forces for normal deformations, where �n is a damping
constant set here to 2.3�10−6 gr / �cm s�.

The shear force in Eq. �1�

Fs = − min„��nRf��s�
�

s − �s�
�̇

s�,��Fn�ŝ… �2�

depends on contact history and cannot be entirely determined
by the position of grains. Such force is given by Eq. �2�,
where the tangential stiffness is �s=8G / �2−�� and � repre-
sents the Coulomb friction coefficient here set to 0.3. The
term �s=2.0�10−6 gr / �cm s� is a damping coefficient and

�s=	0
t �̇s�t��dt� is the tangential displacement that took place

since the contact was first established. If ��̇ is the relative

velocity of the grain surfaces, ��̇s=��̇ − ���̇ · n̂�n̂, and ŝ=��̇s / ���̇s�.
The vector ��s can be computed from the relative displace-

ment vector d between the grains in contact as ��s=d
− �d · n̂0�n̂0, with n̂0 the normal of the contact when it is
created. Whenever a contact is established for the first time,
the viscoelastic part of Eq. �2� �left term� is activated and the
grains feel a force opposing to the tangential displacement.
When the threshold of Coulomb dry friction is exceeded,
sliding occurs following the frictional term �right� in Eq. �2�
and the elastic spring is broken. When the tangential velocity
drops to zero or is inverted, the elastic spring is reactivated
with zero elongation and the friction force is turned off.

The initial pack contructed following �18� models a high
porosity �=41.2% sand, where contacts involve marginal
contact areas. The radius of each particle is extracted from a
given grain size distribution. In our simulations, the radius R
of each particle is selected with equal probability in the
range 0.018–0.021 cm, modeling a well-sorted sand. Peri-
odic boundary conditions are imposed on perpendicular di-
rections to the uniaxial stress field to emulate an effectively
larger system and the confinement in those directions. The
size of the generated sample was 24�24�32 in units of the
maximum grain diameter. Following previous results �18�,
this volume is several times larger than the minimum ho-
mogenization volume for the porosity of a sample with the

given grain size distribution. This homogenization volume is
consistent with that reported in Ref. �19� for a granular me-
dium, like the one considered here, where it lies between two
and three times the typical particle diameter.

The sample is compressed isotropically without friction to
produce a dense pack of porosity 
36% and mean coordi-
nation number 
6. This is done isotropically and without
friction in order to avoid ingraining anisotropies in the
granular pack using the following procedure: The first step
involves positioning the grain on a grid so that they do not
overlap. The typical interparticle spacing in this first step is
two diameters of the largest particle radius. Then the particle
positions are perturbed in their original positions 1% of the
largest radius in a random direction and given an initial ve-
locity. The ensemble of particles is then evolved long enough
for the grains to collide and disorder their positions with no
gravity considered. It is only then that the walls close in to
compact the granular gas. Next, friction is turned on and
several compaction-decompaction cycles are simulated fol-
lowing Ref. �12�, until the stress-strain curve for two con-
secutive cycles show negligible differences. Note that one
cannot get rid of hysteresis by cycling further, due to tangen-
tial friction in contrast to previous models �5� dominated by
grain rearrangements.

III. ANISOTROPY AND HYSTERESIS UNDER UNIAXIAL
STRESS: THE FABRIC

Two consecutive cycles of loading/unloading are shown
in Fig. 1, where the laterally induced stress 	l= �	1+	2� /2 is
shown as a function of the compressive stress 	c=	3. The
uniaxial stress is increased from zero to close to 175 MPa,
and then reduced back to zero. This is done in appropriate
small steps so as to allow for sufficient relaxation. During the
first steps, the lateral stress grows at a relatively low rate,
thus the macroscopic stress anisotropy Ac= �	c−	l� /	c
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FIG. 1. Lateral stress as a function of the loading vertical stress.
The loading-unloading process follows the arrows shown. Two
loading/unloading cycles are shown so that it is clear that one has
reached a limiting behavior. The inset depicts both cycles from the
point of view of the macroscopic anisotropy. Point B indicates the
hydrostatic point where anisotropy changes sign.
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grows sharply �see inset�. As the sample is compacted fur-
ther, the rate of increase of the lateral stress grows until it
approximately equals the compressive stress and a quasilin-
ear behavior follows. This behavior is observed from the
point of view of the stress anisotropy �see inset� where after
around 50 MPa, the anisotropy saturates to a maximum
value.

When the maximum loading is achieved �point A� and
decompaction begins, the lateral stress reduces at a slower
rate than the compressive stress and thus Ac slowly de-
creases. This entails an almost flat response to a rapid de-
crease of the compressive stress. The stresses evolve in such
a way that their magnitudes become equal �at 35 MPa�, a
point at which the stress field is macroscopically hydrostatic
�point B�. Below this point, the lateral stress is greater than
the compressive stress and the anisotropy becomes negative
�10�, as can be clearly seen in the inset of Fig. 1. The hydro-
static point is then the switching point for the principal
stresses of the granular pile. Below this point �C� the lateral
stress decays, overtaking the rate at which the compressive
stress diminishes, until both join close to zero stress. Thus
there is a maximum negative anisotropy before a complete
collapse of the macroscopic anisotropy. As we will see be-
low, the inhomogeneous nature of the force network, under-
lying the described behavior, can still possess anisotropy that
is not evident from macroscopic measurements. The force
network analysis proposed by Radjai et al. �6� has become a
very useful tool to understand the relation between the mac-
roscopic stress state and the local geometry of contacts in
granular packs. Their proposal was to follow different tensor
quantities in the network measuring the geometric orienta-
tion of the contacts, and their strengths as a function of the
force fraction carried by them referred to the mean. Here we
compute the fabric tensor generalized to three dimensions in
order to determine the eigendirections in the granular pack as
a function of the applied stress. The fabric tensor �6,20� is
defined as

Tij��� = �ninj� =
1

N�


k

���

ni
knj

k, �3�

where � denotes the subset of contacts that carry forces
smaller than �F / �F�. The terms ni denote the ith component
of the unitary vector n̂k pointing along the line that joins the
center of the two particles at contact k. N� is the total number
of bonds belonging to the interval �0,��. The eigenvalues of
Tij, denoted by �i �i=1,2 ,3�, are computed for several stress
states. Due to uniaxial compaction �1
�2 while �3 is along
the uniaxial stress direction. One can then compute the an-
isotropy index Ac���= (�3−1 /2��1+�2�).

Figure 2 depicts the fraction of bonds carrying forces be-
low � and the anisotropy corresponding to the same fraction
at the midpoint of the loading stage. It reveals the essential
features described in Refs. �6,7� where more than 80% of the
contacts carry a negative anisotropy �directed preferentially
perpendicular to the loading direction� while about 10% of
the bonds carry a positive anisotropy. As the load must be
supported, the 10% above must carry the burden, and consti-
tute, albeit few, the strongest bonds in the network. Other

than the change in sign of the anisotropy, there is no clear
line separating the strong and weak networks �see Fig. 2� but
the concept of two networks is clearly meaningful.

The previous concept becomes more telling when we de-
scribe the evolution of the fabric tensor as a function of the
loading/unloading process. Figure 3, top panel, shows the
unloading stage where the small force network carries a
strong negative anisotropy while the strong network a posi-
tive one at full loading. The figure shows that the anisotropy
of relatively weak contacts reduces to one-fifth of its maxi-
mum value while the strong network changes by less than a
half of its original value. Meanwhile, the global anisotropy
decreases negligibly in the same interval �see Fig. 1 inset�.
These results evidence that the preferential orientation of the
weak contacts change at a faster rate than those of the strong
network. As decompaction progresses, the orientation of the
contacts is randomized �Ac���
0� for all �. This corresponds
to a hydrostatic stress state, and according to the fabric an-
isotropy, it is a global phenomenon of the network and not a
result of compensating anisotropies of subset networks. Fur-
ther decompaction leads to a preferential orientation of the
strong network along the lateral direction while the weak
contacts tend to align along the vertical direction. This is
seen in Fig. 3, where Ac��� decreases monotonically and be-
comes negative beyond �
2. At the end of decompaction,
the orientation of the weak contacts and strong contacts is
switched.

When the sample is reloaded after unloading, as shown in
Fig. 3, bottom panel, the starting configuration involves a
preferred orientation of weak contacts in the vertical direc-
tion, and in the lateral directions for the strong contacts. As
compaction progresses, a dramatic change in the preferred
orientation is observed, and the weak contacts preferentially
align with the lateral direction along with the strong contacts.
Surprisingly, all the fabric anisotropy is negative while there
is a nonzero uniaxial stress. This is the clearest signal of the
arching structure of the pile where all forces are directed to
the sides. When sufficient loading is added, a strong network
develops carrying a positive anisotropy, while the weak net-
work develops a relatively stronger negative anisotropy.
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gray area in the plot highlights the possible transition region be-
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IV. MOHR’S CIRCLE AND INTERNAL FRICTION

An insightful macroscopic description of the loading/
unloading process can be obtained from the Mohr circle of
the granular pile. In this representation, the normal and shear
components applied instantaneously to every plane in the
material as a result of the uniaxial stress are described. Un-
like most laboratory tests, the lateral stress is not fixed, so the
dynamics of both principal stresses are monitored simulta-
neously. A series of Mohr circles are shown in Fig. 4; the
dashed line circles represent the loading series, while the
solid line circles portray the unloading series. The intersec-
tion of the circles with the horizontal axis represent the main
stress eigenvalues, the largest 	3 in the uniaxial direction,
and the smallest �	1+	2� /2. Figure 4 depicts two angles: �
is the internal effective friction angle as derived from the
tangent to the Mohr circles when anisotropy has saturated.
On the other hand 
 is the angle between a particular plane
and the uniaxial strain direction. There one would see the
combination �−	, where � is the tangential stress and 	 is
the normal stress applied to that plane.

The circles readily describe the evolution of macro aniso-
tropy: When loading, beyond a small uniaxial stress, the an-
isotropy is a constant �see inset of Fig. 1�, so a linear increase
of the circle radii ensues �stresses in both directions increase
at the same rate�. The unloading follows a completely differ-

ent path: The 	3 decreases more rapidly than the lateral
stress, which tends to accumulate the lower end of the circles
close to 50 MPa. When the main stress reduces to 50 MPa,
the lateral stresses begin to relax at a faster rate and one
approaches the hydrostatic point where 	3= �	1+	2� /2. As
shown for the fabric, the pile has hydrostatic character both
microscopically and macroscopically. This stress switching
point gives way to inverted Mohr circles that first grow in the
opposite direction �with 	3� �	1+	2� /2� before decreasing
to zero as uniaxial stress dissappears. It is clear that the local
anisotropy, a remnant in the fabric exhibited in Fig. 3, is not
manifest in the global stress anisotropy as shown by the
Mohr circles.

When load is applied, the granular pile deforms, accumu-
lating elastic energy and dissipating energy by sliding con-
tacts. The friction coefficient dependence of anisotropy and
how it is related to macroscopic properties is then a revealing
feature of the emergent mechanical behavior of the granular
pile. In Fig. 5 we show the macroscopic saturation aniso-
tropy �see inset of Fig. 1� as a function of the microscopic
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friction coefficient � between grains, for the loading regime
in the interval D–A shown in Fig. 1. The relation between
anisotropy and friction is linear to a very good approxima-
tion in the range 0.1���0.3, where it is particularly
simple. This is also a realistic interval of the frictional pa-
rameter, applicable to an ample set of materials. It is clear
that one cannot extend such a fit to lower values of the local
friction as it becomes nonlinear as the limit of zero local
friction corresponds to a small global anisotropy. The latter
limit is interesting and should be addressed further since con-
finement and geometry can yield an apparent macroscopic
friction �21�.

The linear range in Fig. 5 lends itself to the following
relation derived from the definition of anisotropy:

	3

	1
=

1

1 − � − �
, �4�

where =1.1 and �=0.37 are both dimensionless parameters
from Fig. 5 and the ratio 	3 /	1 is a constant for a fixed �,
where the anisotropy has saturated �see inset of Fig. 1�. We
take 	1
	2 from symmetry and actual computations. If the
line drawn from the tangents of the loading Mohr circles in
Fig. 4 is assumed to be the Coulomb failure criterion line,
�=�M	 �for cohesionless material� then tan �=�M as shown
in the figure. On the other hand, the relation 	3 /	1= �1
+sin �� / �1−sin �� follows from the Coulomb criterion �22�.
From Fig. 4, �
� /6, so that the macroscopic friction coef-
ficient implied is �M 
1 /�3
0.577. This is also, in prin-
ciple, the friction coefficient that generates the observed
angle of repose for the same granular material �22�.

Note that this macroscopic friction coefficient is larger
than the microscopic one, set here at �=0.3 for grain-grain
interactions. This fact is expected since the granular detail of
the sheared planes of the material is a structural factor that
has not been taken into account in the Coloumb criterion.
Such an effect should require an additional apparent fric-
tional effect, lumped into the macroscopic friction coefficient
�M. While the angle of internal friction implied by the mac-
roscopic friction coefficient has a clear meaning in rock fail-
ure, its meaning in cohesionless granular has been estab-
lished in Ref. �23� only for a very particular boundary
condition, where slip planes can develop. This is not the case
for either fixed wall or periodic boundary conditions studied
here. The latter case has been analyzed in two dimensions
experimentally in Ref. �24�, where a connection is also made
between the microscopic friction and macroscopic friction
from Rankine analysis. Their results also demonstrate a
greater macroscopic friction due to structural effects, on the
basis of simple geometrical models assuming a peaked dis-
tribution of particle radii. A related study of the geometrical
effects on macroscopic friction is that of Ref. �25� where, as
in �24�, a local friction angle can be defined by the ratio of
the local tangential and normal forces.

The unloading process is starkly different: here the Young
modulus is by no means constant and the failure criterion
cannot be globally Coulombic because it is implied that 	3
should be proportional to 1 /2�	1+	2�. For unloading, if we
believe only in a local Coulomb criterion �3�, we can think

that, as the granular pile fails, the effective friction coeffi-
cient changes. Using again the Coulomb-Mohr construction
where local tangents are taken from a curve joining succe-
sive Mohr circles during unloading, we can define an internal
friction angle, where a sort of reverse failure first occurs, at a
very high �M 
1.73. This is consistent with the fact that the
pile is unloaded and nevertheless it barely changes its lateral
stress �see Fig. 1�. Then the pile fails significantly and the
effective friction decreases abruptly to �M =0.6, and gradu-
ally progresses to zero, i.e., the pile is effectively frictionless,
as we approach the hydrostatic and stress anisotropy switch-
ing point. Here, the geometry of the pack somehow acts to
reduce the macroscopic friction. Finally, below the hydro-
static point, we have an inverted Mohr circle �	3�	1� with
very small effective frictions. This corresponds to the
switched configuration where the strong network is trans-
verse to the remaining uniaxial stress.

The previous results suggest that there is an interplay be-
tween geometry and the microscopic friction to give an ef-
fective macroscopic friction. This relation depends in detail
on the fabric structure of the network, especially for the un-
loading regime. Two-dimensional models can give us insight
into the relation between the fabric and the macroscopic be-
havior of the pile. In Ref. �24�, the author relates the normal
and tangential forces applied to a plane in the material �mac-
roscopic description� to the normal and tangential forces be-
tween grains composing that plane. Once microscopic fric-
tion is set, one only has one parameter to determine, which
depends on the range of angles that the fabric between two
grains can take on a particular plane. Such ranges are not
clear without the fabric information incorporated in a more
formal model in Ref. �25�. Applications to three dimensions
seem more involved and need separate attention.

V. CONCLUSIONS

Summarizing, we have addressed hysteresis and aniso-
tropy of a three-dimensional granular pack under uniaxial
stress, from both microscopic and macroscopic point of view.
We found that separation between a strong network and a
weak network makes sense, and that these networks behave
in a very distinguishable fashion in terms of their anisotropy
as a function of loading and unloading. Fabric anisotropy
during the first steps of loading exhibits signatures of arching
or total transmission of uniaxial stress toward the lateral di-
mensions. At higher loadings, the strong network assumes a
positive anisotropy while the weak network is mainly di-
rected laterally.

Unloading is very different, and begins with large changes
in the weak network accompanied by a virtual paralysis of
the strong network. Further unloading takes the granular
pack through a fabric-wide hydrostatic point where both net-
works essentially point equally in every direction. At this
point, the macroscopic anisotropy is also zero. Finally, the
roles of the strong and weak networks switch, the strong
network pointing in the lateral direction while the weak has
positive anisotropy. These fabric anisotropies remain when
the load is completely lifted, and defines what is known in
soil mechanics as the overconsolidated state.
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Mohr’s circle is introduced to illustrate the behavior of the
main stresses and the macroscopic shear and normal stresses
on every plane. The circle serves to define a macroscopic
internal friction angle that is very simply related to the mi-
croscopic, grain-grain friction. During loading, an empirical
relation is derived, relating anisotropy to the macroscopic
friction angle. A Coulomb friction criterion producing the
same global anisotropy yields in general a friction larger than
the microscopic one. This can be justified in terms of two-
dimensional models where the geometry of the strained
planes tends to increase the effective friction. On unloading,
the picture is much less clear, and only a local Coulomb
model is proposed to interpret the continuously changing ef-
fective friction. The switching point, addressed following the
fabric results, corresponds to a zero effective friction situa-
tion, while for the final stages of unloading the effective

friction is very low or not well-defined at all.
The interplay between microscopic friction and the geom-

etry of the fabric needs to be studied further, probably in two
dimensions, in order to simplify the models. Preliminary as-
sessments in this direction, based on Ref. �24�, show that
geometry can indeed yield both higher and lower friction
angles as compared to the microscopic ones. Proper treat-
ments should nevertheless include fabric information in or-
der to include orientation effects of the forces. Work in this
direction is in progress.
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